Introduction

Hypertension is a major risk factor for cardiovascular disease, the leading cause of death globally\(^1\)-\(^4\). Given that isolated systolic hypertension is known to be an important predictor of death from cardiovascular disease\(^5\)-\(^6\), efforts should be focused on preventing this condition. To aid individuals in checking their own systolic blood pressure (SBP), a tool is needed that allows individuals to monitor their SBP values according to age at specific points in time.

Health index percentile curves allow individuals to visually monitor their own health. A body mass index percentile curve that has been established to help prevent obesity has been used in health education and guidance strategies\(^7\)-\(^9\). Such curves for SBP percentiles might help individuals to monitor their own SBP and for SBP control to be evaluated in populations. To our knowledge, no efforts have yet been made to create SBP percentile curves catering to Japanese populations.

We aimed to establish SBP percentile curves, and to compare those of Japanese men and women aged 20 to 79 years in the years of 1980 and 2005.

Abstract

Objective: To establish systolic blood pressure (SBP) percentile curves for adult Japanese men and women, and to compare the curves obtained for the years of 1980 and 2005.

Methods: We analyzed data from 8,080 and 5,616 community residents aged 20 to 79 years who had an annual health check-up in 1980 and in 2005, respectively. Age-specific percentile curves for SBP were constructed by using the LMS method. We plotted the 3rd, 5th, 15th, 25th, 50th, 75th, 85th, 95th and 97th percentile curves and compared the 5th, 50th and 95th percentile curves for 1980 and 2005.

Results: The SBP percentile values increased with advancing age in both sexes. The 5th, 50th and 95th SBP percentile values were higher for men than for women in 1980 and in 2005, particularly among young adults. Furthermore, the 5th, 50th and 95th SBP percentile values largely decreased from 1980 to 2005 in both sexes.

Conclusion: We established SBP percentile curves and confirmed SBP percentile values for 1980 and 2005 by age and sex.

KEY WORDS: systolic blood pressure, percentile curves, LMS method, Japanese

Method

Study subjects

We used data derived from health check-ups of 8,080 (3,191 men and 4,889 women) and 5,616 (2,016 men and 3,600 women) community residents aged 20 to 79 years in 1980 and in 2005, respectively, at a central hospital in a rural area of Nagano Prefecture in Japan. We excluded 140 and 24 subjects whose SBP was not measured in 1980 and in 2005, respectively. Consequently, data were analyzed from the remaining 7,940 (3,159 men and 4,781 women) subjects in 1980 and 5,592 (2,009 men and 3,583 women) subjects in 2005. The Ethical Committee of Saku Central Hospital approved the study (21-15).

Data collection

A self-administered questionnaire in the health check-up included demographic and other information. SBP was measured by trained nurses using a mercury manometer in the sitting position after at least a 5-min rest both in 1990 and in 2005.
Table 1 Systolic blood pressure-for-age charts, LMS parameters of men and women aged 20 to 79 years in 1980 and 2005

<table>
<thead>
<tr>
<th>Age</th>
<th>1980</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men (n=3,159)</td>
<td>Women (n=4,781)</td>
</tr>
<tr>
<td>M</td>
<td>L</td>
<td>S</td>
</tr>
<tr>
<td>20-24</td>
<td>124</td>
<td>121.82</td>
</tr>
<tr>
<td>25-29</td>
<td>255</td>
<td>123.47</td>
</tr>
<tr>
<td>30-34</td>
<td>282</td>
<td>124.24</td>
</tr>
<tr>
<td>35-39</td>
<td>258</td>
<td>126.50</td>
</tr>
<tr>
<td>40-44</td>
<td>316</td>
<td>128.52</td>
</tr>
<tr>
<td>45-49</td>
<td>420</td>
<td>132.20</td>
</tr>
<tr>
<td>50-54</td>
<td>430</td>
<td>135.17</td>
</tr>
<tr>
<td>55-59</td>
<td>346</td>
<td>136.16</td>
</tr>
<tr>
<td>60-64</td>
<td>277</td>
<td>138.76</td>
</tr>
<tr>
<td>65-69</td>
<td>246</td>
<td>142.20</td>
</tr>
<tr>
<td>70-74</td>
<td>139</td>
<td>145.82</td>
</tr>
<tr>
<td>75-79</td>
<td>66</td>
<td>145.66</td>
</tr>
</tbody>
</table>

n: number of subjects; M: μ for the median; L: λ for the power in the Box-Cox transformation; S: σ for the coefficient of variation.

Results

Fig. 1 shows the smoothed 3rd, 5th, 15th, 25th, 50th, 75th, 85th, 95th and 97th SBP percentile curves for men and women aged 20 to 79 years in the years of 1980 and 2005. SBP percentile values increased with age in both sexes as well as 2005. However, while 50th percentile values exceeded 140 mmHg in both sexes in the age range of 60-69 years in 1980, no 50th percentile values exceeded this level in either sex for any age range in 2005.

Fig. 2 compares SBP percentile curves for men and women in 1980 and 2005. The 5th, 50th and 95th SBP percentile values were higher for men than for women in both years, particularly in young adults of both sexes, whereas those of older men and women did not significantly differ.

Fig. 3 compares the SBP percentile curves for 1980 and 2005 by sex. The 5th, 50th and 95th SBP percentile values largely decreased between 1980 and 2005 in both sexes and the 95th percentile values conspicuously decreased, particularly in older men. The 50th percentile values decreased more in women than in men.
Fig. 1. Smoothed systolic blood pressure percentile curves for men and women aged 20 to 79 years in 1980 and 2005.

Fig. 2. Comparison between systolic blood pressure percentile curves for men and women in 1980 and 2005.
Discussion

The present findings indicated that SBP percentile values increased with advancing age in Japanese men and women in 1980 and in 2005. The 5th, 50th and 95th SBP percentile values were higher for men than for women in both years and largely decreased between 1980 and 2005 in both sexes.

In this study, we confirmed SBP percentile values according to the age, sex and year by establishing SBP percentile curves. These largely decreased between 1980 and 2005 in both sexes. The definition of hypertension changed between 1980 and 2005 to include a lower SBP value\(^{12,13}\), following recognition of the need for lifestyle changes to reduce SBP. These actions are thought to have been largely responsible for the decrease in SBP between 1980 and 2005. Physicians and nurses should understand that the age distribution of SBP values varies with time. The SBP percentile curve could visually confirm age distribution at a specific point in time and it might help medical care and health care activity.

Sex differences were found in the SBP percentile curves in both 1980 and 2005. Lifestyle differences between men and women might be associated with this finding because many Asian women, including Japanese women, do not regularly smoke or drink\(^{14,15}\). The SBP percentile values of young adult men and women significantly differed. We believe that young adults are not aware of the effect of aging on SBP. Thus, men with high SBP values in particular might benefit from being visually shown the SBP percentile curves. Notably, the SBP percentile values of older men and women did not significantly differ. Therefore, young women with normal SBP should carefully consider the effect of aging on SBP by comparing the percentile curves.

The present study has several limitations. The SBP percentile values obtained for men and women aged 20 to 24 years in 2005 might have a low statistical power because of the small sample size. Selection bias might have been an issue because the data were obtained from community residents who underwent health check-ups and might have been relatively healthy. Thus, the SBP percentile values might be underestimated.

In conclusion, we confirmed SBP percentile values by age and sex for 1980 and 2005 by establishing SBP percentile curves. These curves might be effective as a tool for health education and guidance.

Acknowledgments

This study was financially supported by Research-in-Aid for Cardiovascular Diseases, Ministry of Health, Labor and Welfare.

Conflict of interest statement:

The authors declare no financial or other conflicts of interest in the writing of this paper.
References